
Towards a Compact and Efficient SAT-encoding
of Finite Linear CSP

Tomoya Tanjo1, Naoyuki Tamura2, and Mutsunori Banbara2

1 Graduate School of Engineering, Kobe University, JAPAN
2 Information Science and Technology Center, Kobe University, JAPAN

tanjo@stu.kobe-u.ac.jp, tamura@kobe-u.ac.jp, banbara@kobe-u.ac.jp

Abstract. This paper describes a new SAT encoding method applicable
to finite linear CSP, named compact order encoding, which is designed
to generate compact (small sized) and also efficient SAT instances. The
basic idea of the compact order encoding is the use of a numeric system of
base B ≥ 2. Each integer variable is divided into m digits and each digit
is encoded by using the order encoding. Therefore, it is a generalization
of the order encoding (when m = 1), and the log encoding (when B = 2).
In the compact order encoding, each binary constraint can be encoded
into O(B logB d) SAT clauses which is much less than O(d) clauses of the
order encoding where d is the maximum domain size. Therefore it enables
to solve large problems that can not be solved by the order encoding.
The compact order encoding can generate much efficient SAT instance
than the log encoding in general because it uses fewer digits and enables
faster propagations. We also confirmed these observations through some
experimental results.

1 Introduction

A Propositional Satisfiability Testing Problem (SAT) is a combinatorial prob-
lem to find a propositional variable assignment which satisfies all given proposi-
tional formulas [1]. Recent performance improvement of SAT technologies makes
SAT-based approaches applicable for solving hard and practical combinatorial
problems, such as planning, scheduling, hardware/software verification, and con-
straint satisfaction.

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem
to find an integer variable assignment which satisfies all given constraints on
integers of finite domains. A SAT-based constraint solver is a program which
solves a CSP by encoding it to SAT and searching solutions by a SAT solver.

There have been several methods proposed to encode CSP into SAT, such
as the direct encoding [2, 3], the support encoding [4, 5], the log encoding [6, 7],
and the order encoding [8, 9].

Among them, the order encoding, which was first used to encode job-shop
scheduling problems by Crawford and Baker [10] and studied by Inoue et al. [11,
12] showed a good performance for a wide variety of problems, including open-
shop scheduling problems [9] and two-dimensional strip packing problems [13].

Also a SAT-based CSP solver, named Sugar3, based on the order encoding won in
several categories of the 2008 and 2009 International CSP Solver Competitions.

One main reason of its good performance is due to the realization of fast
propagations. In the order encoding, a propositional variable p(x ≤ a) is used
for each integer variable x and domain value a where p(x ≤ a) is defined as true
if and only if the variable x is less than or equal to a. The constraint x ≤ y
is encoded into SAT clauses of p(x ≤ a) ∨ ¬p(y ≤ a) for all domain value a.
Therefore, when p(y ≤ a) becomes true for some a, the Unit Propagation of
SAT solver immediately derives p(x ≤ a). This inference corresponds to the
Bounds Propagation in CSP solvers.

However, the size of the generated SAT instance becomes huge when the
domain size of the original CSP is large. For example, the number of SAT clauses
in encoding n-ary constraint

∑n
i=1 aixi ≤ b will be O(dn−1) where d is the

maximum domain size of xi’s.
On the other hand, the log encoding uses a bit-wise representation for integer

variables, and the size of the generated SAT instance, therefore, is quite small
(linear to log d). However, its performance is slow in general because it requires
many inference steps to “ripple” carries.

In this paper, we propose a new encoding, named compact order encoding,
which is an integration of the order encoding and the log encoding aiming to be
compact (small sized) and also efficient.

The basic idea of the compact order encoding is the use of a numeric system
of base B ≥ 2 to make the domain size small, that is, each integer variable x is
represented by a summation

∑m−1
i=0 Bixi where m = dlogB de and 0 ≤ xi < B

for all xi.
However, simple replacement of integer variables with summations does not

work. For example, the simple replacement of x ≤ y will be
∑m−1

i=0 Bixi ≤∑m−1
i=0 Biyi which contains 2m variables of domain size B and, therefore, requires

O(B2m−1) = O(d2) SAT clauses by the order encoding.
It is possible to introduce new integer variables to reduce the number of

variables occurring in the summation, e.g. replacing Bx1+x0 with a new variable
x′ with extra constraint x′ = Bx1+x0, the domain size of variables are, however,
not bounded by B any more.

Therefore, in this paper, we first describe a reduction of a finite linear CSP
with ternary (including unary and binary) constraints (called 3ary-CSP) to a
Compact 3ary-CSP satisfying: all constraints are ternary, and the domain sizes
of all variables are bounded by the base B.

By applying the order encoding to the reduced Compact 3ary-CSP, each
constraint of the original 3ary-CSP can be encoded to at most O(B2 logB d)
SAT clauses.

Please note that the compact order encoding with base B = 2 is equivalent to
the log encoding, and the one with baseB ≥ d is equivalent to the order encoding.
Therefore, the compact order encoding can be seen as the generalization and
integration of both encodings.

3 http://bach.istc.kobe-u.ac.jp/sugar/

Choosing larger base means smaller number of digits and less carry-ripples,
and therefore faster propagations, but larger SAT size. On the other hand,
smaller base means smaller SAT size but slower propagations. Therefore, choos-
ing appropriate base will be an important issue to be considered.

In this paper, we describe a choice of B = dd 1
2 e, i.e., all variables are repre-

sented by at most two digits, is appropriate for some applications. In this case,
each constraint of the 3ary-CSP can be encoded to at most O(d) SAT clauses.

In the rest of the paper, we first define 3ary-CSP and Compact 3ary-CSP,
and explain the reduction of 3ary-CSP to Compact 3ary-CSP followed by the ex-
planation on the order encoding of Compact 3ary-CSP. As experimental results,
basic propagation performance is measured for various domain size and base val-
ues. As a practical application, performance of solving Open-Shop Scheduling
Problems in the compact order encoding is compared with those of the order
encoding and the log encoding in addition to the comparison with the state-of-
the-art constraint solvers choco [14] and Mistral [15].

2 3ary-CSP

First we define some notations. Z and N are used to denote a set of integers
and non-negative integers respectively. B = {>,⊥} is used to denote a set of
propositional constants (> and ⊥ represent “true” and “false” respectively).

The following is the definition of finite linear 3ary-CSP (ternary CSP) which
only consists of the constraints among at most three non-negative variables.

Definition 1 (3ary-CSP) A (finite linear) 3ary-CSP is defined as a tuple
(X,u, P,C) satisfying the followings.

– X is a finite set of integer variables.
– u is a mapping from X to N representing the upper bound of each integer

variable in X (the lower bound is fixed to 0).
– P is a finite set of propositional variables.
– C is a formula representing the constraint to be satisfied. The syntax of

C is defined as follows, where p ∈ P , n ∈ {1, 2, 3}, xi ∈ X, a ∈ N, and
. ∈ {≤,≥,=}.

C ::= p | ¬p |
n∑

i=1

±xi . a | C ∧ C | C ∨ C

In the following discussion, we simply call the finite linear 3ary-CSP as 3ary-
CSP.

Please note that any finite linear CSP can theoretically be reduced to 3ary-
CSP in the following way.

– When the lower bound l of an integer variable x is not 0, x can be replaced
by a new integer variable x′ satisfying x′ = x− l.

– A constant multiplication ax can be replaced by
∑a

i=1 x when a > 0, or∑−a
i=1 −x when a < 0.

– A linear expression containing more than three variables can be reduced to
ternary expressions by replacing partial summations with new variables.

Example 1. Let w, x, y, z ∈ {−1, 0, 1} be integer variables. A constraint w+2x−
3y−4z = 0 can be reduced to (x′

2 = x′+x′)∧(y′2 = y′+y′)∧(y′3 = y′2+y′)∧(z′2 =
z′ + z′)∧ (z′4 = z′2 + z′2)∧ (v = w′ + x′

2)∧ (−v+ y′3 + z′4 = 4) by introducing new
variables w′ = w + 1, x′ = x+ 1, y′ = y + 1, and z′ = z + 1.

An assignment of a 3ary-CSP (X,u, P,C) is a pair (α, β) where α is a map-
ping from X to N and β is a mapping from P to B. When there exists an
assignment (α, β) which satisfies the formula C and α(x) ≤ u(x) for any x ∈ X,
the 3ary-CSP is called satisfiable and the assignment is called a solution of the
3ary-CSP. We use the following notation to represent the satisfiability.

(α, β) |= C

Sometimes, we use the same notation (α, β) |= C for any formula C not limited
to 3ary-CSP formulas. We also write (α, β) |= (X,u, P,C) when the 3ary-CSP
is satisfiable by the assignment.

2.1 Restricted 3ary-CSP

In this subsection, we introduce a restricted form of 3ary-CSP calledRestricted
3ary-CSP. The aim of introducing Restricted 3ary-CSP is just for the easier
discussion on the reduction of 3ary-CSP to Compact 3ary-CSP described later.

Definition 2 (Restricted 3ary-CSP) A Restricted 3ary-CSP is a 3ary-CSP
(X,u, P,C) where the formula C is restricted in the following forms where p ∈ P ,
x, y, z ∈ X, and a ∈ N.

C ::= p | ¬p | x ≤ a | x ≥ a | x ≤ y | z = x+ a | z = x+ y

| C ∧ C | C ∨ C

Formulas allowed in Restricted 3ary-CSP is very limited, but any 3ary-CSP
formulas can be reduced to the restricted forms as shown by the following
Lemma.

Lemma 1 Any 3ary-CSP (X,u, P,C) can be reduced to a Restricted 3ary-CSP.

Proof. It is shown by verifying the reductions for all cases of
∑n

i=1 ±xi . a (that
is, for all combinations of signs and comparison operators).

Due to space limitations, we only show the reduction of x1 − x2 − x3 ≥ a.
This formula can be translated into (z1 = x2 + x3) ∧ (z2 = z1 + a) ∧ (z2 ≤ x1)
by introducing new integer variables z1 and z2. ut

Any solution of the Restricted 3ary-CSP can be translated back to a solution
of the original 3ary-CSP by simply removing the assignments for the newly
introduced variables.

3 Compact 3ary-CSP

In this section, we define Compact 3ary-CSP which is a 3ary-CSP but the
upper bounds of integer variables are fixed to some integer constant B−1 where
B ≥ 2 is called a base.

Definition 3 (Compact 3ary-CSP) Let B ≥ 2 be an integer constant. A
Compact 3ary-CSP (B;X,P,C) is a 3ary-CSP (X,u, P,C) where u(x) = B − 1
for any integer variable x ∈ X.

Example 2. Let us consider a Compact 3ary-CSP (10; {x1, x0}, ∅, C) where C is
given as follows.

C = (x1 ≤ 2) ∧ (x1 ≤ 1 ∨ x0 ≤ 6)

Its satisfiable assignments can be summarized as follows.

x1 x0 Satisfiable
0–1 0–9 Yes
2 0–6 Yes
2 7–9 No
3–9 0–9 No

Therefore, its satisfiability is equivalent to the satisfiability of 10x1 + x0 ≤ 26.

Example 3. Let us consider a Compact 3ary-CSP (10; {x1, x0, z1, z0}, {c}, C)
where C is given as follows.

C = (c ∨ z0 = x0 + 6) ∧ (c ∨ z1 = x1 + 2)

∧ (¬c ∨ z0 = x0 − 4) ∧ (¬c ∨ z1 = x1 + 3)

It is easy to confirm its satisfiability is equivalent to the satisfiability of 10z1 +
z0 = 10x1 + x0 + 26. When c = ⊥, C = (z0 = x0 + 6 ∧ z1 = x1 + 2) derives
10z1+z0 = 10x1+x0+26. The same conclusion can be derived also when c = >.
As a matter of fact, the propositional variable c represents a carry bit from the
summation of x0 + 6.

4 Reducing 3ary-CSP into Compact 3ary-CSP

In this section, we will explain a method of reducing 3ary-CSP into Compact
3ary-CSP.

As described in the section 2.1, any 3ary-CSP can be reduced to a Restricted
3ary-CSP. So we consider a method to reduce a given Restricted 3ary-CSP
(X,u, P,C) into a Compact 3ary-CSP (B;X ′, P ′, C ′) for any base B ≥ 2.

Before describing our reduction method, we introduce some symbols and
notations. First, the maximum domain size d and its order of magnitude m are
defined as follows.

d = 1 +max({u(x) | x ∈ X} ∪ {a | a is an integer constant occurring in C})
m = dlogB de

To consider the reduction of Restricted 3ary-CSP to Compact 3ary-CSP, we
need to introduce a new integer variable of Compact 3ary-CSP for each digit of
each integer variable x of the Restricted 3ary-CSP.

So, we define x(i) as a syntactic function which generates a new integer
variable symbol of Compact 3ary-CSP from an integer variable symbol x of
Restricted 3ary-CSP and an integer i (0 ≤ i < m). The intention of x(i) is to
represent the i-th digit of x, that is, the following equation is kept in mind.

x(i) = (xdivBi) mod B

We also use the same notation for any integer constant a ∈ N defined as
follows.

a(i) := (adivBi) mod B

Finally, the following is the definition of the notation of x(j,i) where x is
either an integer variable or constant.

x(j,i) :=

j∑
k=i

Bk−ix(k)

Remind that the constraint C in Restricted 3ary-CSP was defined as follows:

C ::= p | ¬p | x ≤ a | x ≥ a | x ≤ y | z = x+ a | z = x+ y

| C ∧ C | C ∨ C

In the above definition, the formulas x ≤ y, x ≤ a, and x ≥ a can be reduced
in a similar way. Also the formulas z = x + a and z = x + y can be reduced in
a similar way. So we only focus on the reduction of x ≤ y and z = x+ y in the
following subsections.

4.1 Reduction of x ≤ y

The formula x ≤ y of Restricted 3ary-CSP can be represented as x(m−1,0) ≤
y(m−1,0) by using integer variables of targeted Compact 3ary-CSP.

In this subsection, we show a method to reduce the formula into Compact
3ary-CSP formula without changing the upper bounds of the integer variables.

First we show the following Lemma.

Lemma 2 For any non-negative integers b, xi, yi (i = 0, 1) satisfying b ≥ 2 and
x0, y0 < b, the following holds.

bx1 + x0 ≤ by1 + y0 ⇐⇒ (x1 ≤ y1) ∧ (x1 ≤ y1 − 1 ∨ x0 ≤ y0)

Proof. (=⇒) When bx1+x0 ≤ by1+y0, we can easily conclude (x1 ≤ y1)∧(x1 =
y1 ⇒ x0 ≤ y0) which is equivalent to the conclusion formula.
(⇐=) For both cases of (x1 ≤ y1) ∧ (x1 ≤ y1 − 1) and (x1 ≤ y1) ∧ (x0 ≤ y0), we
can derive bx1 + x0 ≤ by1 + y0. ut

Now we define the reduction of x(m−1,0) ≤ y(m−1,0) and prove its correctness.

Definition 4 (Reduction of x ≤ y) Let B ≥ 2 be a base, x and y be inte-
ger variables or constants of a Reduced 3ary-CSP. Then τ(x, y) is a syntactic
translation defined as follows.

τ(x, y) := τm−1(x, y)

τ0(x, y) := x(0) ≤ y(0)

τi(x, y) := x(i) ≤ y(i) ∧ (x(i) ≤ y(i) − 1 ∨ τi−1(x, y)) (i > 0)

Proposition 1 Let B ≥ 2 be a base, x(i) and y(i) be integer variables of a
Compact 3ary-CSP. Then the following holds.

x(m−1,0) ≤ y(m−1,0) ⇐⇒ τ(x, y)

Proof. It can be easily shown by recursively applying the Lemma 2. ut

Please note that τ(x, y) only contains binary constraints of Compact 3ary-
CSP and its size is linear to m.

Example 4. The following is an example of τ2(x, y) which is equivalent to x(2,0) ≤
y(2,0), i.e. B2x(2) +Bx(1) + x(0) ≤ B2y(2) +By(1) + y(0).

τ2(x, y)

= x(2) ≤ y(2) ∧ (x(2) ≤ y(2) − 1 ∨ τ1(x, y))

= x(2) ≤ y(2) ∧ (x(2) ≤ y(2) − 1 ∨ (x(1) ≤ y(1) ∧ (x(1) ≤ y(1) − 1 ∨ τ0(x, y))))

= x(2) ≤ y(2) ∧ (x(2) ≤ y(2) − 1 ∨ (x(1) ≤ y(1) ∧ (x(1) ≤ y(1) − 1 ∨ x(0) ≤ y(0))))

4.2 Reduction of z = x + y

The formula z = x+ y of Restricted 3ary-CSP can be represented as z(m−1,0) =
x(m−1,0) + y(m−1,0) by using integer variables of targeted Compact 3ary-CSP.

As in the case of x ≤ y, we show a method to reduce the formula into ternary
formula without changing the upper bounds of the integer variables. However,
in this case, we don’t have an equivalent formula but an equi-satisfiable formula.

First we show the following Lemma.

Lemma 3 For any non-negative integers b, c, c′, x, y, z satisfying b ≥ 2, c ≤ 1,
c′ ≤ 1, and x, y, z < b, the following holds.

bc+ z = x+ y + c′ ⇐⇒ (c′ = 1 ∨ c = 1 ∨ z = x+ y)

∧ (c′ = 1 ∨ c = 0 ∨ z = x+ y − b)

∧ (c′ = 0 ∨ c = 1 ∨ z = x+ y + 1)

∧ (c′ = 0 ∨ c = 0 ∨ z = x+ y + 1− b)

Proof. Easily verified by considering all cases of c = 0 or 1, and c′ = 0 or 1. ut

Now we define the reduction of z(m−1,0) = x(m−1,0) + y(m−1,0) and prove its
correctness.

Definition 5 (Reduction of z = x+ y) Let B ≥ 2 be a base, z, x and y be
integer variables or constants of a Restricted 3ary-CSP, and ci (0 ≤ i ≤ m)
be propositional variables not occurring in other places. Then σ(z, x, y) is a
syntactic translation defined as follows.

σ(z, x, y) := ¬c0 ∧ ¬cm ∧
m−1∧
i=0

((ci ∨ ci+1 ∨ z(i) = x(i) + y(i))

∧(ci ∨ ¬ci+1 ∨ z(i) = x(i) + y(i) −B)

∧(¬ci ∨ ci+1 ∨ z(i) = x(i) + y(i) + 1)

∧(¬ci ∨ ¬ci+1 ∨ z(i) = x(i) + y(i) + 1−B))

Please note that σ(z, x, y) only contains ternary constraints of Compact 3ary-
CSP and its size is linear to m.

Proposition 2 Let B ≥ 2 be a base, z(i), x(i) and y(i) be integer variables or
constants of a Compact 3ary-CSP. Then the following holds for any assignment
(α, ∅).

(α, ∅) |= z(m−1,0) = x(m−1,0) + y(m−1,0) ⇐⇒ ∃β.(α, β) |= σ(z, x, y)

Proof. By considering digit-wise addition, it is easy to confirm that z(m−1,0) =
x(m−1,0)+y(m−1,0) is equi-satisfiable with c′0 = 0∧c′m = 0∧

∧m−1
i=0 Bc′i+1+z(i) =

x(i) + y(i) + c′i for the same assignments for z(i), x(i), y(i) and some assignments
for c′i ∈ {0, 1} (0 ≤ i ≤ m).

By using Lemma 3 and replacing c′i with propositional variables ci, we can
show z(m−1,0) = x(m−1,0) + y(m−1,0) is equi-satisfiable with σ(z, x, y) for the
same assignments for z(i), x(i), and y(i). ut

Example 5. The following is an example of σ(z, x, y) when the base B = 2 and
u(z) = u(x) = u(y) = 7. It represents an addition of 3-bits integers.

σ(z, x, y) =

¬c0 ∧ ¬c3
∧ (c0 ∨ c1 ∨ z(0) = x(0) + y(0)) ∧ (c0 ∨ ¬c1 ∨ z(0) = x(0) + y(0) − 2)

∧ (¬c0 ∨ c1 ∨ z(0) = x(0) + y(0) + 1) ∧ (¬c0 ∨ ¬c1 ∨ z(0) = x(0) + y(0) − 1)

∧ (c1 ∨ c2 ∨ z(1) = x(1) + y(1)) ∧ (c1 ∨ ¬c2 ∨ z(1) = x(1) + y(1) − 2)

∧ (¬c1 ∨ c2 ∨ z(1) = x(1) + y(1) + 1) ∧ (¬c1 ∨ ¬c2 ∨ z(1) = x(1) + y(1) − 1)

∧ (c2 ∨ c3 ∨ z(2) = x(2) + y(2)) ∧ (c2 ∨ ¬c3 ∨ z(2) = x(2) + y(2) − 2)

∧ (¬c2 ∨ c3 ∨ z(2) = x(2) + y(2) + 1) ∧ (¬c2 ∨ ¬c3 ∨ z(2) = x(2) + y(2) − 1)

4.3 Whole reduction

Now we define the whole reduction of Restricted 3ary-CSP to Compact 3ary-
CSP.

Definition 6 For any base B ≥ 2 and Restricted 3ary-CSP formula C, we define
the function C∗ as follows.

(p)∗ = p

(¬p)∗ = ¬p
(x ≤ a)∗ = τ(x, a)

(x ≥ a)∗ = τ(a, x)

(x ≤ y)∗ = τ(x, y)

(z = x+ a)∗ = σ(z, x, a)

(z = x+ y)∗ = σ(z, x, y)

(C1 ∧ C2)
∗ = C∗

1 ∧ C∗
2

(C1 ∨ C2)
∗ = C∗

1 ∨ C∗
2

Proposition 3 Let (X,u, P,C) be a Restricted 3ary-CSP. Let B ≥ 2 be a base
and (B;X ′, P ′, C ′) be a Compact 3ary-CSP defined as follows.

X ′ = {x(i) | x ∈ X, 0 ≤ i < m}
P ′ = P ∪ {p | p is a new propositional variable introduced to C ′}
C ′ = C∗ ∧

∧
x∈X

(x ≤ u(x))∗

Then the following holds.

∃(α, β) |= (X,u, P,C) ⇐⇒ ∃(α′, β′) |= (B;X ′, P ′, C ′)

Proof. It can be shown from the Propositions 1 and 2. ut

Finally, we conclude that any 3ary-CSP can be reduced to a Compact 3ary-
CSP.

Theorem 1 (Reduction of 3ary-CSP to Compact 3ary-CSP) Any 3ary-
CSP can be reduced to a Compact 3ary-CSP of any base B ≥ 2.

Proof. It can be shown from the Lemma 1 and the Proposition 3. ut

5 Compact Order Encoding

In this section, we describe the order encoding in general, and the compact
order encoding realized by applying the order encoding to the Compact 3ary-
CSP reduced from the original 3ary-CSP.

5.1 Order encoding

In the order encoding, a propositional variable p(x ≤ a) is used for each integer
variable x and domain value a where p(x ≤ a) is defined as true if and only if
the variable x is less than or equal to a.

Now we consider the encoding of a 3ary-CSP (X,u, P,C).
We use the following propositional variables for each integer variable x ∈ X.

p(x ≤ 0) p(x ≤ 1) p(x ≤ 2) · · · p(x ≤ u(x)− 1)

Please note that p(x ≤ u(x)) is unnecessary because it is always true. We also
assume p(x ≤ a) = ⊥ whenever a < 0 and p(x ≤ a) = > whenever a ≥ u(x).

In addition, the following clauses are required for each variable x to specify
the relation among these propositional variables.

¬p(x ≤ a− 1) ∨ p(x ≤ a) (1 ≤ a ≤ u(x)− 1)

The following is the Proposition presented in [9] to encode a linear compar-
ison in general where l(e) and u(e) specifies the lower and upper bound of an
expression e respectively.

Proposition 4 The following holds for any xi ∈ X, non-zero integers ai, and
integer c ≥ l(

∑n
i=1 ai xi).

n∑
i=1

ai xi ≤ c ⇐⇒
∧

∑n
i=1 bi=c−n+1

∨
i

(ai xi ≤ bi)
#

Parameters bi’s range over Z satisfying
∑n

i=1 bi = c − n + 1 and l(aixi) − 1 ≤
bi ≤ u(aixi) for all i. The translation ()# is defined as follows.

(a x ≤ b)# :=

p(x ≤ bb/ac) (a > 0)

¬p(x ≤ db/ae − 1) (a < 0)

Proof. Please refer to [9].

Linear comparisons
∑n

i=1 ai xi ≥ c and
∑n

i=1 ai xi = c can be encoded by
using

∑n
i=1 −ai xi ≤ −c and

∑n
i=1 ai xi ≤ c ∧

∑n
i=1 ai xi ≥ c respectively.

Example 6. A linear comparison x+ y ≤ 7 can be encoded to p(y ≤ 5)∧ (p(x ≤
2) ∨ p(y ≤ 4)) ∧ (p(x ≤ 3) ∨ p(y ≤ 3)) ∧ (p(x ≤ 4) ∨ p(y ≤ 2)) ∧ p(x ≤ 5) when
l(x) = l(y) = 2 and u(x) = u(y) = 6.

To generate a SAT instance, the formula should finally be converted to a
Conjunctive Normal Form (CNF). Tseitin transformation can be used to convert
the formula into an equi-satisfiable CNF formula in linear time by introducing
a linear number of new propositional variables [16].

5.2 Compact Order Encoding of 3ary-CSP

As described in the previous section, any 3ary-CSP can be reduced to a Compact
3ary-CSP for any base B.

Since the Compact 3ary-CSP contains only ternary constraints and the do-
main size of variables are bounded by B, each constraint of the original 3ary-CSP
can be encoded O(B2 logB d) SAT clauses in the worst case.

The following table summarizes the number of SAT clauses required to encode
each constraint.

Order Compact Order Log
Constraint Encoding Encoding Encoding

x ≤ a O(1) O(logB d) O(log2 d)
x ≤ y O(d) O(B logB d) O(log2 d)

z = x+ a O(d) O(B logB d) O(log2 d)
z = x+ y O(d2) O(B2 logB d) O(log2 d)

When choosing B = dd 1
m e for some m > 0, that is, when representing in

m-digits, the above table can be rewritten as follows.

Order Compact Order Log
Constraint Encoding Encoding Encoding

x ≤ a O(1) O(m) O(log2 d)

x ≤ y O(d) O(md
1
m) O(log2 d)

z = x+ a O(d) O(md
1
m) O(log2 d)

z = x+ y O(d2) O(md
2
m) O(log2 d)

6 Experimental Results

In order to compare the basic performance of the compact order encoding with
those of the order and log encodings, we use a handmade problem named a
sequence problem which consists of a sequence of n+1 variables to be arranged
in a given range.

As for a practical application, the performance of the compact order encoding
for solving Open-Shop Scheduling Problems is compared with those of the order
and log encodings.

6.1 Sequence Problems

A sequence problem of length n is defined as the following 3ary-CSP (X,u, ∅, C).

– X = {xi | 0 ≤ i ≤ n}
– u(x) = n− 1 for each x ∈ X

– C =
∧n−1

i=0 xi + 1 ≤ xi+1

This problem is unsatisfiable for any n since there are n + 1 variables to be
arranged in the range of size n.

We compare the compact order encoding with the order and log encodings
in the size of the generated SAT instance, the memory consumption, and the
CPU time to prove the unsatisfiability of the instance by a SAT solver for this
problem.

dd 1
m e (1 ≤ m ≤ 4) and 2 are chosen as a base B for the compact order

encoding. Please note that it is equivalent to the order encoding when m = 1,
and it is equivalent to the log encoding when B = 2. The length n is varied
within 5000, 8000, 10000, 20000, and 30000.

Each constraint of the sequence problem of length n is reduced to O(m)
constraints of the Compact 3ary-CSP, and then reduced Compact 3ary-CSP is
encoded to SAT by using the order encoding.

Order Compact Order Log
Encoding Encoding Encoding

n m = 2 m = 3 m = 4

5000 1006 56 29 21 17
8000 2644 123 52 38 27

10000 4156 174 72 48 45
20000 17956 509 201 119 82
30000 40954 978 352 227 127

Fig. 1. Comparison of the file sizes of the generated SAT instances for sequence prob-
lems

Fig. 1 shows the file sizes of the generated SAT instances in mega bytes.
Compared with the order encoding, the compact order encoding generates much
smaller SAT instances even when m = 2. Especially, when n = 30000, the size
of the order encoding is more than 40 giga bytes while the size of the compact
order encoding is less than 1 giga bytes.

Fig. 2 and Fig. 3 show the memory consumptions in mega bytes and the CPU
times in seconds for solving the generated SAT instances. We used MiniSat 2.0
core solver [17] as a backend SAT solver on Intel Xeon 3.0 GHz, 16GB Memory
machine with time limit of 2 hours (7200 seconds). In the figure, “M.O.” means
the out of memory, and “T.O.” means that the problem could not be solved in
2 hours (7200 seconds).

Only the compact order encoding solved all given instances. The order en-
coding could not solve the instances due to the out of memory when n ≥ 10000.
The log encoding could not solve the instances in 2 hours when n ≥ 10000.

When n ≤ 8000, the order encoding solved the instances without any deci-
sions, but the compact order and log encodings need some decisions because of
the carry-ripples.

As a summary, choosing the order of magnitude m = 2 (i.e. B = dd 1
2 e) is the

most effective choice for this problem.

Order Compact Order Log
Encoding Encoding Encoding

n m = 2 m = 3 m = 4

5000 4827.61 231.84 121.57 104.86 200.80
8000 13073.18 435.35 221.14 194.59 502.07

10000 M.O. 622.10 377.71 261.69 T.O.
20000 M.O. 1795.87 1028.27 1035.88 T.O.
30000 M.O. 3220.83 T.O. T.O. T.O.

Fig. 2. Comparison of the memory consumptions for sequence problems

Order Compact Order Log
Encoding Encoding Encoding

n m = 2 m = 3 m = 4

5000 14.29 64.78 76.58 103.33 596.80
8000 47.02 189.03 212.21 384.93 2611.44

10000 M.O. 382.95 650.58 526.52 T.O.
20000 M.O. 1527.46 4889.55 6311.37 T.O.
30000 M.O. 4631.40 T.O. T.O. T.O.

Fig. 3. Comparison of the CPU times for sequence problems

6.2 Open-Shop Scheduling Problems

An Open-Shop Scheduling (OSS) Problem consists of n jobs J1, J2, . . . , Jn and
n machines M1, M2, . . . , Mn. Each job Ji consists of n operations Oi1, Oi2, . . . ,
Oin. An operation Oij is performed at machine Mj and has a process time pij
(positive integer). Any two different operations Oij and Oik of the same job Ji
can not be processed at the same time. Any two different operations Oij and Okj

of the same machine Mj can not be processed at the same time. The objective
of OSS as a decision problem is to decide whether the all jobs can be completed
within the given deadline, called makespan.

As an OSS instance, “j6-per0-0” by Brucker et al. [18] is chosen (its opti-
mum makespan is 1056). It consists of 6 jobs and 6 machines. To obtain larger
domain problems, we also use instances generated from “j6-per0-0” by mul-
tiplying the process times by some constant factor c. The factor c is varied
within 1, 10, 50, 100, 200, and 1000. Their optimum makespan values are 1056,
10560, 52800, 105600, 211200, and 1056000 respectively. For each instance, the
makespan is set to the optimum value minus one which is the most difficult case.

We compare the compact order encoding of m = 2 (i.e. B = dd 1
2 e) with the

order and log encodings in the CPU time to solve (or to prove the unsatisfiability
of) the instance by a SAT solver for this problem. The comparison is also made
with the state-of-the-art constraint solvers choco 2.11 [14] and Mistral [15].

Fig. 4 shows the CPU times in seconds spent by MiniSat 2.0 core solver on
Intel Xeon 3.0 GHz, 16GB Memory machine with time limit of 1 hours (3600
seconds). In the figure, “T.O.” means that the problem could not be solved in 1
hours, and “M.O.” means the out of memory.

Multiplication Order Compact Order Log
factor c makespan Encoding Encoding Encoding choco Mistral

1 1055 124.55 19.22 381.27 975.85 110.47
10 10559 1351.15 57.99 1055.78 2213.90 22.49
50 52799 M.O. 88.18 820.77 3165.83 15.25

100 105599 M.O. 117.37 698.89 T.O. T.O.
200 211199 M.O. 161.00 770.69 T.O. T.O.

1000 1055999 M.O. 338.29 1250.69 2320.69 T.O.

Fig. 4. Comparison of the CPU times for j6-per0-0 with multiplication factor c

Compared with other encodings, the compact order encoding is the fastest
for any c. The CPU time in the compact order encoding is much shorter than
the CPU time in the order encoding. The log encoding is the second fastest. But
the compact order encoding is over 4 times faster than the log encoding. The
order encoding uses much memory than the compact order encoding and it takes
considerably longer time when the multiplication factor c becomes larger.

Compared with CSP solvers, only the compact order and log encodings solved
the all given instances.

7 Conclusion

In this paper, we proposed a new encoding method, named compact order encod-
ing, which is an integration of the order encoding and the log encoding aiming
to be compact (small sized) and also efficient.

The compact order encoding is realized by two steps. In the first step, a finite
linear CSP is reduced to a Compact 3ary-CSP in which the domain sizes of all
variables are bounded by some B ≥ 2. In the next step, the obtained Compact
3ary-CSP is encoded into SAT by using the order encoding.

The features of the compact order encoding can be summarized as follows.

– It is a generalization of the order and log encodings.
– It is compact. Each ternary constraint of 3ary-CSP is encoded into at most

O(B2 logB d) SAT clauses where B is a base and d is the domain size. It is
much less than O(d2) SAT clauses of the order encoding.

– It is efficient. The compact order encoding is considered to be more efficient
than the log encoding in general because it requires less carry-ripples.

We also confirmed these observations through some experimental results.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications (FAIA). IOS
Press (2009)

2. de Kleer, J.: A comparison of ATMS and CSP techniques. In: Proceedings of the
11th International Joint Conference on Artificial Intelligence (IJCAI 1989). (1989)
290–296

3. Walsh, T.: SAT v CSP. In: Proceedings of the 6th International Conference on
Principles and Practice of Constraint Programming (CP 2000). (2000) 441–456

4. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3) (1990) 275–286

5. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th European Confer-
ence on Artificial Intelligence (ECAI 2002). (2002) 121–125

6. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress. (1994) 253–258

7. Gelder, A.V.: Another look at graph coloring via propositional satisfiability. Dis-
crete Applied Mathematics 156(2) (2008) 230–243

8. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP
into SAT. In: Proceedings of the 12th International Joint Conference on Principles
and Practice of Constraint Programming (CP 2006), LNCS 4204. (2006) 590–603

9. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP
into SAT. Constraints 14(2) (2009) 254–272

10. Crawford, J.M., Baker, A.B.: Experimental results on the application of satisfi-
ability algorithms to scheduling problems. In: Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994). (1994) 1092–1097

11. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A compet-
itive and cooperative approach to propositional satisfiability. Discrete Applied
Mathematics 154(16) (2006) 2291–2306

12. Nabeshima, H., Soh, T., Inoue, K., Iwanuma, K.: Lemma reusing for SAT based
planning and scheduling. In: Proceedings of the International Conference on Au-
tomated Planning and Scheduling 2006 (ICAPS 2006). (2006) 103–112

13. Soh, T., Inoue, K., Tamura, N., Banbara, M., Nabeshima, H.: A SAT-based method
for solving the two-dimensional strip packing problem. Journal of Algorithms in
Cognition, Informatics and Logic (2009)

14. The choco team: choco: an open source Java constraint programming library. In:
Proceedings of the 3rd International CSP Solver Competition. (2008) 7–13

15. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the 3rd
International CSP Solver Competition. (2008) 31–39

16. Prestwich, S.D.: CNF encodings. In: Handbook of Satisfiability. IOS Press (2009)
75–97

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing (SAT
2003), LNCS 2919. (2003) 502–518

18. Brucker, P., Hurink, J., Jurisch, B., Wöstmann, B.: A branch & bound algorithm
for the open-shop problem. Discrete Applied Mathematics 76(1–3) (1997) 43–59

